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Abstract

The method of maximum-likelihood is typically applied to item response theory (IRT) models

when the ability parameter is estimated while conditioning on the true item parameters. In

practice, the item parameters are unknown and need to be estimated first from a calibration

sample. Lewis (1985) and Zhang and Lu (2007) proposed the expected response functions (ERFs)

and the corrected weighted-likelihood estimator (CWLE), respectively, to take into account the

uncertainty regarding item parameters for purposes of ability estimation. In this paper, we

investigate the performance of ERFs and of the CWLE in different situations, such as various

test lengths and levels of measurement error in item parameter estimation. Our empirical results

indicate that ERFs can cause the bias in ability estimation to fall within [−0.2, 0.2] for all

conditions, whereas the CWLE can effectively reduce the bias in ability estimation provided that

it has a good foundation to start from.

Key words: Item response theory, maximum-likelihood estimator, expected response functions,

measurement-error modeling, weighted-likelihood estimator, corrected weighted-likelihood

estimator
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1 Introduction

Traditionally, the maximum-likelihood method is applied to item response theory

(IRT) models when the examinee ability parameter θ is estimated, which results in the

maximum-likelihood estimator (MLE) θ̂m. In that case, item parameters are usually estimated

first from a calibration sample, and then the MLEs of θ’s in the target sample are calculated with

the estimated item parameters treated as fixed and known. When the item parameter estimation

is both accurate and precise, replacing the real item parameters with the estimated ones is not

unreasonable, and it is acceptable to estimate the ability parameters in the regular way. Under

the assumption that the real item parameters are known, both Lord (1983) and Warm (1989)

proposed corrections of θ̂m for bias based on the asymptotic expansion. It seems reasonable to

assume that, if the uncertainty of item parameters does not introduce extra biases in θ̂m, then

these corrections should remain applicable, too.

However, it has been found that, when the estimated item parameters are used as

substitutes for the real ones, neither the MLE with Lord bias-correction (MLE-LBC) nor Warm’s

weighted-likelihood estimator (WLE) will be as effective as they are supposed to be, especially

when employing the 3PL model (Zhang, 2005). As a result, the measurement error in item

parameter estimation must be considered a potential contaminator to the ability estimation

process as well. Lewis (1985) came up with the idea of expected response functions (ERFs), which

incorporate the uncertainty of item parameters by averaging out the noises induced by estimation

in the item response functions (IRFs). Along this line, Mislevy, Wingersky, and Sheehan (1994)

provided the operational procedures for applied work with ERFs. On the other hand, Song (2003)

and Zhang, Xie, Song, and Lu (2007) derived the bias-correction formulas for the MLE and WLE

of θ by asymptotic expansion with imperfect estimated item parameters under certain regularity

conditions. This method is called measurement-error modeling. Zhang and Lu (2007) embraced

the thinking behind measurement-error modeling and proposed the corrected weighted-likelihood

estimator (CWLE) method.

To obtain an accurate ability estimate when employing the 3PL model, measurement error

in ability estimation and in item parameter estimation clearly has to be taken into account, but
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how these methods compare to each other is of concern. Accordingly, the main purpose of this

study is to investigate the performance of ERFs and of the CWLE in different situations, such as

various test lengths and levels of measurement error in item parameter estimation. It is also of

practical interest to know when these bias-correction procedures should be applied.

2 Methods

In this section, the two bias-correction procedures are briefly introduced. Suppose there

is a test with N dichotomously scored 3PL items, where Xn is the score of a randomly selected

examinee on item n in the calibration sample and Yn is the score of an examinee on item n in the

target sample. (Examinees in the calibration sample are not necessarily the same group of people

as those in the target sample.) Let β = (a, b, c) denote the vector of item parameters. The 3PL

IRF is defined as the probability of answering an item correctly by a randomly selected examinee

with ability θ, that is,

F (θ; β) ≡ c + (1− c)
1

1 + exp{−1.7a(θ − b)} . (1)

2.1 Expected Response Functions

A corresponding ERF is defined as

F ∗(θ) ≡ Eβ[F (θ; β)] =
∫

F (θ; β) · p(β)dβ, (2)

where p(β) ≡ p(β|x) is the posterior distribution of β with prior knowledge from the calibration

sample. This ERF will be used to replace the original IRF in the likelihood function.

Because of the integration, it is computationally intensive to take expectations whenever

the ERFs are calculated. Thus, Mislevy et al. (1994) described an operational procedure as an

alternative, which is the following:

1. Obtain an estimate of the posterior distribution p(βn), n = 1, . . . , N .

2. Specify a grid of J θ values across the ability range of interest. Let θj denote the jth grid

point, j = 1, . . . , J .

3. Draw K item parameter vectors from p(βn). Let β
(k)
n be the kth such draw.
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4. For each of the K sets of item parameters, determine P(k)
nj , the probability of a correct

response to item n at θj , where

P(k)
nj = p(yn = 1|θ = θj , βn = β(k)

n ). (3)

5. Compute the expectation at each point θj by averaging the probabilities obtained in Step 4:

F ∗
n(θj) =

1
K

K∑

k=1

P(k)
nj , j = 1, . . . , J. (4)

For the nth item, the collection of points {(θj , F
∗
n(θj)) : j = 1, . . . , J} is referred to as a

nonparametric ERF because it does not assume any parametric form. The nonparametric ERF is

further approximated by a close-fitting 3PL curve F ∗∗
n . The MLEs for the 3PL item parameters

β∗∗n = (a∗∗n , b∗∗n , c∗∗n ) that best approximate F ∗
n are found by maximizing

J∏

j=1

{
F ∗∗

n (θj ; β∗∗n )F ∗n(θj)

[
1− F ∗∗

n (θj ;β∗∗n )
]1−F ∗n(θj)

}Wj

(5)

over the J-point θ grid, where Wj is a weight that specifies the relative importance of fitting

F ∗∗ at θj . The resulting 3PL approximation is referred to as a fitted ERF of the nth item. The

likelihood function is thus determined with the fitted ERFs of all items serving as substitutes for

the IRFs, and standard approaches to estimating ability parameters such as MLE and EAP can

be applied immediately.

2.2 Corrected Weighted-Likelihood Estimator

The other method considered here is measurement-error modeling (Song, 2003; Zhang et

al., 2007). In this method, the bias of θ̂m can be decomposed into two sources of measurement

error: One is the bias of θ̂m given item parameters, and the other is the bias resulting from the

uncertainty of item parameters. The former has been addressed by Lord’s MLE-LBC and by

Warm’s WLE. If the latter can be quantified, subtracting it from either MLE-LBC or WLE should

result in an unbiased (or less biased) estimate. In fact, Zhang and Lu (2007) made good use of

the idea and proposed the CWLE method, which is described in the theorem that follows.

Let Fn(θ) ≡ F (θ; βn) be the probability of the nth item being answered correctly by a

randomly selected examinee with ability θ. Under the assumption of local independence (Lord,
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1980), the likelihood function for θ given the responses y={y1, . . . , yN} is

L(θ|y) =
N∏

n=1

[Fn(θ)]yn · [1− Fn(θ)]1−yn . (6)

If the item parameters βn are known, the MLE θ̂m is the maximizer of Equation 6, which also

satisfies the likelihood equation:

∂ ln L(θ|y)
∂θ

= 1.7
N∑

n=1

anKn(θ)(yn − Fn(θ)) = 0, (7)

where

Kn(θ) = K(θ; an, bn, cn) ≡ Pn(θ)
Fn(θ)

=
1

1 + cn exp{−1.7an(θ − bn)} (8)

and

Pn(θ) ≡ 1
1 + exp{−1.7an(θ − bn)} (9)

is the 2PL model. Let Qn(θ) = 1− Pn(θ).

Let In(θ) be the item-information function for item n,

In(θ) = 1.72a2
n(1− cn)Pn(θ)Qn(θ)Kn(θ), (10)

and let

I(θ) =
N∑

n=1

In(θ) (11)

be the test-information function. Given item parameters, Lord (1983) applied the asymptotic

expansion to the likelihood equation and obtained the the following bias function for θ̂m:

B(θ) =
1.7

I2(θ)

N∑

n=1

anIn(θ)
(

Pn(θ)− 0.5
)

. (12)

The MLE-LBC of θ is defined as θ̂c = θ̂m −B(θ̂m).

Warm (1989) proposed the WLE based on Lord’s work. The WLE, θ̂w, is the maximizer

of the function f(θ)L(θ|y), where f(θ) is a suitable chosen function satisfying

∂ ln f(θ)
∂θ

= −B(θ)I(θ).

Therefore, θ̂w satisfies the following weighted-likelihood equation,

∂ ln[f(θ)L(θ|y)]
∂θ

= 1.7
N∑

n=1

anKn(θ)(yn − Fn(θ))−B(θ)I(θ) = 0. (13)
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The WLE can be shown to be less biased than the MLE with the same asymptotic variance and

normal distribution.

In reality, β’s are estimated in the calibration sample, and then their estimates, β̂’s, are

fixed as substitutes for the true β’s. When the maximum-likelihood method is applied to estimate

the examinees’ θ’s in the target sample, instead of Equation 7, θ̂m must satisfy

N∑

n=1

ânK̂n(θ)(yn − F̂n(θ)) = 0 (14)

with K̂n(θ) = K(θ; ân, b̂n, ĉn) and F̂n(θ) = F (θ; ân, b̂n, ĉn). Similarly, θ̂w must satisfy

1.7
N∑

n=1

ânK̂n(θ)(yn − F̂n(θ))− B̂(θ)Î(θ) = 0. (15)

To account for the uncertainty of item parameters, they are assumed to be measured with

errors. Let

E(ân) = an + δan, E(b̂n) = bn + δbn, E(ĉn) = cn + δcn,

Var(ân) = σ2
an, Var(b̂n) = σ2

bn, Var(ĉn) = σ2
cn,

Cov(ân, b̂n) = σabn, Cov(b̂n, ĉn) = σbcn, and Cov(ân, ĉn) = σacn,

where δan, δbn, and δcn are the biases of ân, b̂n, and ĉn, respectively. σ2
an, σ2

bn, σ2
cn, σabn, σbcn, and

σacn are elements of the variance/covariance matrix of the triplet (ân, b̂n, ĉn). No distributional

assumptions are needed, but the following regularity conditions are required to establish the whole

theory of CWLE:

(A0) Item parameters an and bn are uniformly bounded, and cn is bounded away from 1. θ is a

bounded variable.

(A1) There exists n0 such that for any n > n0, limM→∞ σ2
N = 0, where M is the calibration

sample size and σ2
N = max1≤n≤N{σ2

an, σ2
bn, σ2

cn, δ2
an, δ2

bn, δ2
cn}.
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(A2)

lim
M→∞

1
N

N∑

n=1

Var[(ân − an)2] = 0, lim
M→∞

1
N

N∑

n=1

Var[(b̂n − bn)2] = 0,

lim
M→∞

1
N

N∑

n=1

Var[(ĉn − cn)2] = 0, lim
M→∞

1
N

N∑

n=1

Var[(ân − an)(b̂n − bn)] = 0,

lim
M→∞

1
N

N∑

n=1

Var[(ân − an)(ĉn − cn)] = 0, and lim
M→∞

1
N

N∑

n=1

Var[(b̂n − bn)(ĉn − cn)] = 0.

(A3) (ân − an)/σan, (b̂n − bn)/σbn, and (ĉn − cn)/σcn have uniformly bounded four moments.

(A4) For any fixed θ, there exists c0(θ) > 0 such that lim infN→∞ I(θ)/N ≥ c0(θ) > 0.

The details of these regularity conditions can be found in Zhang and Lu (2007).

In the following theorem, notation op(·) is needed. If FN = GN + op(HN ), it means that

(FN −GN )/HN converges to zero in probability (Serfling, 1980).

Theorem (Zhang, Xie, Song, & Lu, 2007)

Suppose that θ̂w is the regular WLE of θ and satisfies Equation 15, where the estimated item

parameters, β̂’s, are regarded as fixed and known. Assume that the regularity conditions

(A0)-(A4) hold. Then

θ̂w = θ + [J(θ) + Q(θ) + Z(θ)−B(θ)I(θ)]/I(θ) + op

(
max

(
σ2

N ,
1√
N

))
, (16)

where I(θ) is the test-information function given by Equation 11, B(θ) is given by Equation 12,

and

J1(θ) = −1.72
N∑

n=1
(θ − bn)(1− cn)Pn(θ)Qn(θ)Kn(θ)

{1.7an(θ − bn) [0.5− Pn(θ) + cnLn(θ)] + 1} (σ2
an + δ2

an),

J2(θ) = −1.73
N∑

n=1
a3

n(1− cn)Pn(θ)Qn(θ)Kn(θ) [0.5− Pn(θ) + cnLn(θ)] (σ2
bn + δ2

bn),

J3(θ) = 1.72
N∑

n=1
2an(1− cn)Pn(θ)Qn(θ)Kn(θ)

{1.7an(θ − bn) [0.5− Pn(θ) + cnLn(θ)] + 1} (σabn + δanδbn),
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J4(θ) = 1.7
N∑

n=1, cn>0
anQn(θ)Kn(θ)Ln(θ)(σ2

cn + δ2
cn),

J5(θ) = 1.7
N∑

n=1, cn>0
Qn(θ)Kn(θ){1.7an(θ − bn)[1− 2cnLn(θ)]− 1}(σacn + δanδcn),

J6(θ) = −1.72
N∑

n=1, cn>0
a2

nQn(θ)Kn(θ)[1− 2cnLn(θ)](σbcn + δbnδcn),

J(θ) = J1(θ) + J2(θ) + J3(θ) + J4(θ) + J5(θ) + J6(θ),

Q1(θ) = −1.72
N∑

n=1
an(θ − bn)(1− cn)Pn(θ)Qn(θ)Kn(θ)δan,

Q2(θ) = 1.72
N∑

n=1
a2

n(1− cn)Pn(θ)Qn(θ)Kn(θ)δbn,

Q3(θ) = −1.7
N∑

n=1, cn>0
anQn(θ)Kn(θ)δcn,

Q(θ) = Q1(θ) + Q2(θ) + Q3(θ), and

Z(θ) = 1.7
N∑

n=1
anKn(θ)(yn − Fn(θ)).

This theorem gives the error terms of bias in θ̂w, which are obtained by treating β̂’s

estimated from a calibration sample as though they are the true values when they actually have

associated statistical errors. According to Equation 16, the total bias of θ̂w is given by

[J(θ) + Q(θ) + Z(θ)−B(θ)I(θ)]/I(θ),

which is the sum of (a) the bias of θ̂w given β̂’s as the true values, which equals

[Z(θ) − B(θ)I(θ)]/I(θ); and (b) the bias of substituting β̂’s for β’s, which is [J(θ) + Q(θ)]/I(θ).

When the theorem is applied to a practical situation and θ is estimated by θ̂w , I(θ), J(θ), Q(θ),

Z(θ), and B(θ) have to be replaced by their estimates, Î(θ̂w), Ĵ(θ̂w), Q̂(θ̂w), Ẑ(θ̂w), and B̂(θ̂w),

respectively. It is clear that Ẑ(θ̂w) − B̂(θ̂w)Î(θ̂w) = 0 from Equation 15. Accordingly, the new

bias-corrected ability estimator is defined as

θ̂wc = θ̂w − [Ĵ(θ̂w) + Q̂(θ̂w)]/Î(θ̂w), (17)
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where θ̂wc denotes the CWLE and Ĵ , Q̂, and Î are all evaluated at θ̂w. Apparently, the CWLE

works best when there is a reasonable θ̂w to start from. (This will be demonstrated in Section 3.)

3 Simulation Studies

3.1 Design

Some simulation studies were conducted to allow for a comparison of the ERFs and CWLE.

For all studies, two test lengths (N=35 and N=70) are considered, and all items are modeled by

3PL models. The real item parameters are generated marginally in Matlab (The MathWorks,

Inc., 2007): Log(a) follows a normal distribution with mean −0.1 and standard deviation 0.4,

b follows a normal distribution with mean 0 and standard deviation 1.5, and c follows a beta

distribution with mean 0.22 and standard deviation 0.05. The true β’s are shown in Table 1.

Our goal is to examine the performance of ERFs and CWLE with different levels of

measurement error in β estimation from the calibration sample. The use of different software

or calibration sample sizes would yield different levels of measurement error, and it is hard to

enumerate all possible combinations of these conditions. For example, large bias in β estimation

may result from bad software, a calibration sample size that is too small, or both. To have

better control on the magnitude of these measurement errors, δa’s, δb’s, and δc’s are generated in

Matlab. Three levels of measurement error in β estimation are considered: large bias, median

bias, and negligible bias, which can be compared to the operational scenarios where β’s are

estimated from a calibration sample of size < 500, 1,000, and > 5, 000, respectively. (We assume

that the larger the calibration sample size, the better the item parameter estimation, regardless of

the software used.) Without loss of generality, the triplet (δa,δb,δc) for each item is assumed to

follow a multivariate normal distribution, the mean and variances/covariances of which vary from

item to item. Besides, it is natural to assume that the triplets for different items are independent.

Each time we generate a set of {(δan,δbn,δcn) : n = 1, . . . , N} for a total of N items, which are

treated as the item bias estimates, and the estimated item parameters (ân, b̂n, ĉn) for the nth item

are calculated by

ân = an + δan, b̂n = bn + δbn, and ĉn = cn + δcn.
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Table 1
Simulated True Item Parameters for the 70-Item Test

Item a b c Item a b c
1 1.2145 0.0723 0.2835 36 0.8332 0.6681 0.3200
2 0.9932 2.4498 0.2012 37 0.9514 2.6131 0.3561
3 0.5657 -0.6576 0.3064 38 0.6048 1.1258 0.2698
4 1.2740 1.7239 0.2582 39 0.7591 -1.0534 0.2331
5 0.7467 1.3533 0.2636 40 0.7553 -0.0035 0.2699
6 2.2014 -0.0363 0.2350 41 0.6303 -2.1020 0.2121
7 0.6670 1.0233 0.1862 42 0.8788 1.8163 0.3153
8 0.8617 0.7997 0.2024 43 0.6037 -1.1131 0.2983
9 0.9157 -0.0487 0.2832 44 1.0568 -0.3722 0.2236
10 0.9063 1.2036 0.3496 45 0.5610 -1.4502 0.2884
11 0.4602 -1.7750 0.2747 46 1.5003 -1.9449 0.2368
12 0.8763 1.6128 0.4302 47 0.6732 -2.0891 0.2933
13 0.6917 3.3107 0.2828 48 0.6824 0.0053 0.3418
14 1.2359 0.3697 0.2755 49 0.9529 2.6770 0.2407
15 0.9117 -0.9586 0.3024 50 0.8636 -3.4394 0.3951
16 1.5037 -0.8225 0.3110 51 1.0132 -2.3428 0.2354
17 0.8800 -0.4547 0.3925 52 0.7933 0.2393 0.2555
18 0.6777 -1.9274 0.3303 53 0.6666 -0.0767 0.2359
19 1.7620 0.6543 0.2772 54 0.9970 3.0302 0.1813
20 1.0723 0.4940 0.2354 55 1.2376 -3.5479 0.3135
21 0.9151 0.5579 0.2104 56 0.7182 -1.2628 0.2447
22 1.8462 0.2401 0.2663 57 0.9063 -2.4380 0.2705
23 1.6068 0.0391 0.2892 58 0.5784 -2.7701 0.2560
24 0.9381 0.4437 0.3172 59 1.5682 -0.7267 0.2733
25 0.6205 -0.0567 0.3358 60 1.0389 -1.0317 0.2629
26 1.5043 0.2674 0.2842 61 1.0407 -0.9062 0.2596
27 1.6106 0.2059 0.3404 62 0.6053 -1.2803 0.2780
28 1.1303 0.6481 0.2471 63 0.9283 -0.3579 0.3197
29 1.3088 0.0140 0.1752 64 1.9090 -1.5824 0.3210
30 0.7699 0.7510 0.2383 65 0.8335 -0.7725 0.2208
31 0.9393 -2.2205 0.1912 66 0.7925 2.4777 0.2431
32 1.3867 -0.1077 0.2963 67 0.5538 1.1808 0.2504
33 0.8239 1.8788 0.2107 68 1.3536 -0.5254 0.2669
34 1.0747 -1.3066 0.2006 69 1.1407 0.8589 0.2630
35 1.9959 0.9734 0.2024 70 1.2149 -0.2157 0.2677

Note. The true item parameters for the 35-item test are the first 35 items.

The above procedure is repeated 100 times, and the sample variances/covariances are used to

approximate the true variance/covariance matrix of the β̂’s. In other words, there is no restriction

on the correlation between any two estimated item parameters of the same item. The correlation

can be positive or negative, depending completely on the resulting estimated item parameters.

Table 2 presents the mean simulated bias of the β̂’s based on 100 replications. The whole
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procedure, which is the calibration step, is replicated for each test length.

In the target sample, 13 ability levels are set up with 100 examinees at each level for

each replication. The estimated item parameters obtained at the previous stage are fixed to

obtain the θ̂w. The CWLEs are then calculated from Equation 17 using the simulated biases and

the estimated variance/covariance matrices. As for the ERFs, the posterior distribution has to

Table 2
Mean Simulated Bias of Estimated Item Parameters Based on 100 Replications

Large bias Median bias Negligible bias
Item a b c a b c a b c

1 -0.0673 -0.1418 -0.0042 0.0963 -0.1088 0.0233 -0.0088 0.0021 -0.0010
2 -0.0725 -0.1037 0.0232 -0.0147 -0.0974 -0.0296 0.0022 0.0092 -0.0047
3 0.0520 -0.0514 -0.0654 0.0655 0.0147 -0.0010 -0.0113 -0.0144 -0.0002
4 0.0020 -0.0123 -0.0147 0.0593 -0.0047 0.0404 0.0014 -0.0160 0.0020
5 0.0687 -0.0504 -0.0403 -0.1160 -0.0620 0.0235 0.0083 -0.0096 -0.0031
6 -0.0521 -0.0860 -0.0286 -0.0552 0.0431 -0.0333 -0.0033 -0.0107 0.0002
7 -0.0172 -0.1482 -0.0015 -0.1807 -0.0656 -0.0238 0.0081 0.0018 -0.0021
8 -0.0178 -0.0028 0.0033 -0.0541 -0.1072 -0.0578 0.0027 -0.0012 0.0084
9 -0.0743 -0.0716 0.0037 0.1408 -0.0628 -0.0069 0.0132 -0.0017 -0.0007
10 -0.0509 -0.0718 -0.0491 -0.0585 -0.1190 -0.0099 -0.0137 -0.0030 -0.0057
11 -0.0827 0.0238 -0.0088 0.0145 0.0219 0.0184 -0.0020 -0.0006 -0.0065
12 -0.1175 -0.1352 -0.0160 -0.0613 0.0381 0.0085 0.0104 -0.0040 0.0010
13 0.0185 -0.0133 0.0127 0.1680 -0.0603 -0.0003 0.0046 -0.0050 -0.0031
14 -0.0936 -0.1151 -0.0103 0.0231 -0.0888 -0.0037 0.0011 -0.0071 0.0006
15 -0.0236 -0.2164 -0.0191 -0.1471 -0.0322 0.0289 -0.0093 -0.0207 -0.0033
16 -0.0368 -0.0676 -0.0000 -0.0146 -0.0708 0.0024 -0.0040 -0.0046 0.0067
17 0.0098 -0.1156 -0.0495 0.0416 -0.1104 -0.0523 -0.0038 0.0023 -0.0066
18 -0.0244 -0.1088 -0.0248 0.0869 -0.0128 -0.0244 0.0080 0.0038 0.0071
19 -0.0000 -0.1935 -0.0343 0.1507 -0.0266 0.0333 -0.0089 -0.0110 0.0028
20 -0.0343 -0.2045 -0.0079 0.0570 -0.1056 -0.0053 0.0002 -0.0073 -0.0077
21 0.0039 -0.0713 0.0184 -0.0854 -0.0125 -0.0026 -0.0021 0.0013 0.0029
22 0.0417 -0.0951 -0.0464 0.0237 -0.0987 -0.0049 -0.0001 0.0012 -0.0011
23 -0.1374 -0.1076 0.0087 -0.0530 -0.0785 0.0077 0.0061 0.0007 0.0049
24 -0.0566 -0.1159 -0.0492 -0.0525 0.0533 -0.0105 0.0007 -0.0011 0.0015
25 -0.0532 -0.0820 -0.0257 -0.0842 -0.1187 0.0292 -0.0054 -0.0102 -0.0034
26 -0.1202 -0.0441 -0.0444 0.0794 -0.0643 0.0072 0.0006 -0.0175 -0.0001
27 0.0071 -0.1400 -0.0193 -0.1645 0.0070 -0.0058 0.0056 -0.0002 0.0024
28 0.0358 -0.0753 -0.0265 -0.0791 -0.0265 -0.0312 0.0041 -0.0080 -0.0075
29 -0.0828 -0.1192 0.0437 0.0750 -0.0090 -0.0054 0.0013 -0.0110 -0.0022
30 -0.0071 -0.0240 0.0028 0.1542 -0.1247 -0.0480 -0.0019 0.0055 -0.0023
31 0.0383 -0.0165 0.0117 -0.0681 -0.0863 0.0214 -0.0101 -0.0129 -0.0065
32 -0.0517 -0.0264 -0.0211 0.0149 0.0250 -0.0204 0.0037 0.0058 0.0025
33 -0.0508 -0.1032 0.0232 0.1537 -0.1540 0.0165 -0.0018 0.0041 0.0002
34 -0.0232 -0.1583 -0.0337 0.1686 -0.0819 -0.0107 0.0023 -0.0016 0.0035
35 -0.0221 -0.1443 0.0036 0.0151 -0.1214 -0.0112 0.0012 -0.0054 -0.0037

10



be determined. Approximating the transformed item parameters β∗ = (log(a), b, logit(c)) by a

multivariate normal distribution, the delta method is applied to get the posterior distribution of

β. This process was repeated 100 times to match 100 replications in the calibration step for each

test length. As a result, there are 10,000 examinees in total at each of 13 ability levels.

In our studies, the ability estimates of examinees who answered all the items right or

wrong were set to be 4 or −4, respectively. In addition, we defined θ̂wc = θ̂w when θ̂w=4 or −4.

3.2 Evaluation

The accuracy and precision are studied by examining the bias and root mean square error

(RMSE) of WLE, CWLE, and ERFs at each ability level. Let θ̃j and θj denote the estimated and

true abilities for the jth examinee at the Lth ability level, j = 1, . . . , 10, 000 and L = 1, . . . , 13.

Then,

BiasL =
1

10000

10000∑

j=1

{θ̃j − θj}, (18)

and

RMSEL =

√√√√ 1
10000

10000∑

j=1

{θ̃j − θj}2. (19)

The θ̃j is an estimate resulting from the method of WLE, CWLE, or ERFs.

3.3 Results

Figure 1 presents the results of the bias and RMSE of ability estimates for two different

test lengths with large bias in β̂. The top panel shows that, for the 35-item test, the CWLE

is better in reducing bias than WLE for θ values higher than −1.5. The bias of the CWLE is

fairly close to zero for all θ values higher than −1. On the other hand, ERFs do not appear to

work well in reducing bias except for the median θ values. Neither ERFs nor CWLE could reduce

the RMSE. The graphs in the bottom panel make obvious that longer tests (i.e., N = 70) lead

to better ability estimation, in terms of bias and RMSE, when the WLE or CWLE is applied.

The maximum bias of the WLE is less than 0.1, while the bias of the CWLE stays around zero

for almost all θ values. This means the CWLE performs best when the bias of WLE is within

a reasonable range. The bias for the ERFs is not significantly influenced by the change of test

lengths because its range is [−0.2, 0.2] in both situations, which agrees with the findings in Lewis
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Figure 1. Bias and root mean square error of ability estimates for two test lengths;
large bias in item parameter estimation.

(2001) that “the greater test lengths, at least in the θ range studied, do not appear to reduce the

relative effects of increasing uncertainty about the item parameters.” However, the RMSE of the

ERFs does decrease for longer tests.

Figure 2 illustrates the relationship between the magnitude of measurement error and the

effectiveness of the two bias-correction methods. The left panel indicates that the bias of WLE

approaches zero for θ values higher than −2, when the amount of measurement error decreases

towards zero. This observation verifies that the WLE performs well as long as the measurement

error in β̂ is negligible. CWLE still performs well in reducing bias with median or greater amounts

of measurement error, but the difference between CWLE and WLE decreases as the measurement
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error decreases. The two curves overlap when the bias of β̂ becomes negligible. As expected, the

curves of ERFs are almost identical in all cases; the bias is within [−0.2, 0.2] for all θ values. The

possible noises are averaged out beforehand, even if the true β can be regarded as known. The

right panel shows that the RMSE of the CWLE tends to the RMSE of the WLE when the amount

of measurement error approaches zero. The RMSE of the ERFs stays the same for all cases.

It is worth noting that, in both figures, when the θ value is lower than −2, CWLE does

not appear to work well for all 35-item tests in the sense that it does not reduce the bias of WLE.

One possible explanation is that under our experimental conditions θ̂w is not accurate enough for

extreme low θ values. The CWLE is a bias-reduction method based on the WLE and is applicable

when the WLE can provide a good estimate. Adopting the bias-correction procedure in Equation

17 without paying attention to the results of the WLE could lead to a worse θ estimate. On the

other hand, the ERFs method does not rely on any other estimation procedure.

4 Conclusions

Several conclusions can be drawn concerning the use of the two bias-correction procedures

for θ estimation in IRT models. First, both methods are easy to implement, and their underlying

theories are intuitive (i.e., the CWLE corrects bias by removing it from the biased estimate, while

the ERFs corrects it by averaging out the noise). Second, the CWLE can effectively reduce the

bias in θ estimation even when the bias in β̂ is large, provided that reasonable results of WLE are

found to initiate the bias-correction procedure given by Equation 17. Finally, the ERFs can cause

the bias in θ estimation to fall within [−0.2, 0.2], regardless of the test length and the magnitude

of bias in item parameter estimation.

Although the last two conclusions are based on simulation studies, there is no reason

to expect different results for tests with operational characteristics similar to the experimental

conditions. As discussed in Section 3, measurement errors in item parameter estimation are

generated in our studies, and there is no restriction on the correlation between any two estimated

item parameters of the same item. Further empirical studies are needed to see how different

degrees of association between estimated item parameters will affect the efficiency of these two

methods in reducing the bias in ability estimation.
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Figure 2. Bias and root mean square error of ability estimates for three levels of
measurement error (N = 35).
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